Unidirectional brain to muscle connectivity reveals motor cortex control of leg muscles during stereotyped walking
نویسندگان
چکیده
In lower mammals, locomotion seems to be mainly regulated by subcortical and spinal networks. On the contrary, recent evidence suggests that in humans the motor cortex is also significantly engaged during complex locomotion tasks. However, a detailed understanding of cortical contribution to locomotion is still lacking especially during stereotyped activities. Here, we show that cortical motor areas finely control leg muscle activation during treadmill stereotyped walking. Using a novel technique based on a combination of Reliable Independent Component Analysis, source localization and effective connectivity, and by combining electroencephalographic (EEG) and electromyographic (EMG) recordings in able-bodied adults we were able to examine for the first time cortical activation patterns and cortico-muscular connectivity including information flow direction. Results not only provided evidence of cortical activity associated with locomotion, but demonstrated significant causal unidirectional drive from contralateral motor cortex to muscles in the swing leg. These insights overturn the traditional view that human cortex has a limited role in the control of stereotyped locomotion, and suggest useful hypotheses concerning mechanisms underlying gait under other conditions. ONE SENTENCE SUMMARY Motor cortex proactively drives contralateral swing leg muscles during treadmill walking, counter to the traditional view of stereotyped human locomotion.
منابع مشابه
Dynamic Increase in Corticomuscular Coherence during Bilateral, Cyclical Ankle Movements
In humans, the midline primary motor cortex is active during walking. However, the exact role of such cortical participation is unknown. To delineate the role of the primary motor cortex in walking, we examined whether the primary motor cortex would activate leg muscles during movements that retained specific requirements of walking (i.e., locomotive actions). We recorded electroencephalographi...
متن کاملThe Changes of Leg Musclus Activities Following Increase of Gait Velocity
Purpose: Motor control evaluation and analysis of it"s specifications for diagnosis of neuromuscular diseases is new approach in clinical electroneurophysiology, that is based on the changes of electromyography responses and classic reflexes in this field. In this study quantitative power spectrum frequency used for changes of motor control strategies. Materials and Methods: Twenty five health...
متن کاملCortical muscle control of spontaneous movements in human neonates.
Anatomical studies show the existence of corticomotor neuronal projections to the spinal cord before birth, but whether the primary motor cortex drives muscle activity in neonatal 'spontaneous' movements is unclear. To investigate this issue, we calculated corticomuscular coherence (CMC) and Granger causality in human neonates. CMC is widely used as an index of functional connectivity between t...
متن کاملDynamic cortical participation during bilateral, cyclical ankle movements: effects of aging
The precise role of the human primary motor cortex in walking is unknown. Our previous study showed that the primary motor cortex may contribute to specific requirements of walking (i.e., maintaining a constant movement frequency and bilaterally coordinating the feet). Because aging can impair (i) the ability to fulfill the aforementioned requirements and (ii) corticomuscular communication, we ...
متن کاملBrain Connectivity Associated with Muscle Synergies in Humans.
UNLABELLED The human brain is believed to simplify the control of the large number of muscles in the body by flexibly combining muscle coordination patterns, termed muscle synergies. However, the neural connectivity allowing the human brain to access and coordinate muscle synergies to accomplish functional tasks remains unknown. Here, we use a surprising pair of synergists in humans, the flexor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 159 شماره
صفحات -
تاریخ انتشار 2017